Depletion of embryonic stem cell signature by histone deacetylase inhibitor in NCCIT cells: involvement of Nanog suppression.

نویسندگان

  • Jueng Soo You
  • Jae Ku Kang
  • Dong-Wan Seo
  • Jae Hyun Park
  • Jong Woo Park
  • Jae Cheol Lee
  • Yae Jee Jeon
  • Eun Jung Cho
  • Jeung-Whan Han
چکیده

The embryonic stem cell-like gene expression signature has been shown to be associated with poorly differentiated aggressive human tumors and has attracted great attention as a potential target for future cancer therapies. Here, we investigate the potential of the embryonic stem cell signature as molecular target for the therapy and the strategy to suppress the embryonic stem cell signature. The core stemness gene Nanog is abnormally overexpressed in human embryonic carcinoma NCCIT cells showing gene expression profiles similar to embryonic stem cells. Down-regulation of the gene by either small interfering RNAs targeting Nanog or histone deacetylase inhibitor apicidin causes reversion of expression pattern of embryonic stem cell signature including Oct4, Sox2, and their target genes, leading to cell cycle arrest, inhibition of colony formation in soft agar, and induction of differentiation into all three germ layers. These effects are antagonized by reintroduction of Nanog. Interestingly, embryonic carcinoma cells (NCCIT, NTERA2, and P19) exhibit a higher sensitivity to apicidin in down-regulation of Nanog compared with embryonic stem cells. Furthermore, the down-regulation of Nanog expression by apicidin is mediated by a coordinated change in recruitment of epigenetic modulators and transcription factors to the promoter region. These findings indicate that overexpression of stemness gene Nanog in NCCIT cells is associated with maintaining stem cell-like phenotype and suggest that targeting Nanog might be an approach for improved therapy of poorly differentiated tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanog requires BRD4 to maintain murine embryonic stem cell pluripotency and is suppressed by bromodomain inhibitor JQ1 together with Lefty1.

Embryonic stem cells (ESCs) are maintained in an undifferentiated state through expression of the core transcriptional factors Nanog, Oct4, and Sox2. However, the epigenetic regulation of pluripotency is poorly understood. Differentiation of ESCs is accompanied by a global reduction of panacetylation of histones H3 and H4 suggesting that histone acetylation plays an important role in maintenanc...

متن کامل

P-117: Gene Expression and Developmental State of Mouse Cloned Embryos after Treatment with Histone Deacetylase Inhibitor,Suberoylanilide Hydroxamic Acid (SAHA)

Background: It is known that acetylation level of the nuclear histones in cloned embryos is lower compare to normally developed embryos. Histone deacetylas inhibitors (HDACi) with improvement of acetylation level in these embryos can affect embryo quality in pre-implantation stage and expression level of different genes especially developmental genes. Materials and Methods: In this research, SA...

متن کامل

Effects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science

Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...

متن کامل

Sirtuin 1 regulation of developmental genes during differentiation of stem cells.

The longevity-promoting NAD+-dependent class III histone deacetylase Sirtuin 1 (SIRT1) is involved in stem cell function by controlling cell fate decision and/or by regulating the p53-dependent expression of NANOG. We show that SIRT1 is down-regulated precisely during human embryonic stem cell differentiation at both mRNA and protein levels and that the decrease in Sirt1 mRNA is mediated by a m...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 69 14  شماره 

صفحات  -

تاریخ انتشار 2009